Designing Photonic Materials for Effective Bandgap Modification and Optical Concentration in Photovoltaics

Yunlu Xu and Jeremy N. Munday, Member, IEEE

Abstract—The limiting efficiency for photovoltaic energy conversion based on a semiconductor p-n junction is typically determined using the method of detailed balance put forth by Shockley and Queisser. Here, we describe how this theory is altered in the presence of a photonic structure that is capable of modifying the absorption and emission of photons and optimize a device with optical loss. By incorporating specifically designed photonic structures, higher maximum efficiencies can be achieved for low bandgap materials by restricting the absorption and emission of above bandgap photons. Similarly, restriction of the emission angle leads to increased optical concentration. We consider how both of these effects are modified in the presence of a nonideal photonic structure. Further, we find that the energy of the photonic bandgap that is needed for maximum efficiency depends critically on the reflectivity of the photonic crystal.

Index Terms—Bandgap engineering, detailed balance, photonic crystal (PC), Shockley–Queisser limit.

I. INTRODUCTION

In order to calculate the limiting efficiency of a solar cell, Shockley and Queisser developed a formalism that is based on the detailed balance of absorption and emission of photons that occurs at open circuit [1]. In the absence of nonradiative (NR) recombination and with infinite carrier mobility, the maximum efficiency is determined, which depends solely on the material’s bandgap. Their method has been further generalized over the years [2]–[6] and is often the starting point for considering more advanced solar energy conversion processes [7].

Because the maximum conversion efficiency depends solely on the bandgap, it is worthwhile to explore further the connection between the bandgap energy and the efficiency. The semiconductor bandgap is important because it determines both which photons can be absorbed, and at open circuit, which photons must be emitted. Absorption of above bandgap photons gives rise to a current density \(J_L \), which can be withdrawn from the device. Under open-circuit conditions, the cell still absorbs light; however, no current is removed by the external circuit.

In order to maintain a detailed balance, radiative recombination leads to a flux of photons out of the cell equal in number to those entering the cell. The emitted flux comes from recombination across the bandgap. Thus, in the ideal case considered by Shockley and Queisser, the bandgap alone is all that is needed to describe the absorption and emission processes, which are necessary to determine the conversion efficiency. The modification of the absorption and emission of a cell can lead to spectral shifts and effective bandgap modifications of the device [14]–[16]. We previously found that the introduction of even small amounts of loss in a photonic crystal (PC) that is placed atop a solar cell can result in significant efficiency degradations [14]. In the following analysis, we optimize the photonic bandgap energy depending on PC loss and find that with appropriate bandgap selection, the cell efficiency still improves. For a 90% reflective PC at a 0.67-eV semiconductor, the unoptimized device yields an efficiency of 15.0%, while the optimized device yields 23.8%.

We also note that this effect is physically distinct from thermophotovoltaic devices where an intermediate structure is thermally isolated from the cell and is used as a modified emitter to effectively change the incident spectrum on the device [8], [9].

II. PHOTONIC ASPECTS OF DETAILED BALANCE

In order to modify the semiconductor absorption and emission, we place a PC on top of the structure (see Fig. 1), where the PC has a photonic bandgap that extends from the semiconductor bandgap energy \(E_{g}^{sc} \) to the photonic bandgap energy \(E_{g}^{pc} \) (where \(E_{g}^{sc} < E_{g}^{pc} \)). This modification has two effects on the cell. First, \(J_L \) is decreased because incident photons with energies between \(E_{g}^{sc} \) and \(E_{g}^{pc} \) will be reflected off the top surface and will not reach the cell. Second, emission from the cell will be similarly limited. Photons that are created by radiative recombination will have energies greater than \(E_{g}^{sc} \), however, only photons with energies greater than \(E_{g}^{pc} \) can escape the cell. Thus, photons with energies between \(E_{g}^{sc} \) and \(E_{g}^{pc} \) will be trapped within the cell, unable to escape. These photons can be reabsorbed by the cell in a process called photon recycling. The continuous absorption and reemission leads to a high concentration of carriers and, hence, an increased open-circuit voltage. Thus, the addition of a PC to the top of the cell leads to a decrease in the current density and an increase in the open-circuit voltage.

In order to determine the maximum efficiency, the equations of Shockley and Queisser can be used if the semiconductor...
A few typical solar cell materials are shown in Fig. 2(a). For a low bandgap material like Ge, the current is high, but the voltage is low. Thus, restricting the absorption and emission allows the device to work at a higher voltage, which leads to an efficiency improvement. For a material like GaAs, there is already a nearly perfect balance between the voltage and current. Improving the voltage, while decreasing the current has a detrimental effect on the device performance [see Fig. 2(a)]. We should also note that under ideal conditions, it would appear that \(V_{oc} > E_g^{SC}/q \) when \(E_g^{PC} \) is larger than the luminescence that escapes [10], where \(n \) is the index of refraction of the semiconductor, and \(\theta_e \) is the emission half angle from the cell, which is usually \(\pi/2 \).

If we allow an additional NR recombination pathway defined by a NR recombination current density \(J_{NR} \), then the internal luminescence efficiency can be written as

\[
\eta_{int} = \frac{J_{dark} \left(\frac{4n^2}{\sin^2 \theta} \right)}{J_{dark} \left(\frac{4n^2}{\sin^2 \theta} \right) + J_{NR}}
\]

where the total current is now \(J_{tot} = J_L - J_{dark} - J_{NR} \). Nonideal internal luminescence reduces the overall efficiency of the photovoltaic device [see Fig. 2(b)]; however, the PC is still able to improve the efficiency of a low-bandgap semiconductor. As depicted in Fig. 2(b), even for low internal fluorescence, an ideal PC can improve the efficiency of a 0.7-eV bandgap material by \(\sim 13\% \) in absolute efficiency.

A very high quality photonic material is important to realize the aforementioned efficiency improvements. As an example, we consider a material with \(E_g^{SC} = 0.67 \) eV covered by a PC with reflectivity \(R \) and a photonic bandgap from \(E_g^{PC} \) to \(E_g^{SC} \). \(R = 90\% \) means that 90% of the incident photons over the energy range from \(E_g^{PC} \) to \(E_g^{SC} \) will be reflected from the cell, and 90% of the internal luminescence that would typically escape will be trapped within the cell. Fig. 3 shows that the largest efficiency gains are achieved with \(R \geq 90\% \). Similarly, for \(R < 100\% \), the \(E_g^{PC} \) required for maximum efficiency reduces rapidly with decreasing \(R \) (see Table I).

The current–voltage characteristic of a cell clearly demonstrates the decrease in current and the increase in voltage upon the addition of a PC. The PC reduces the maximum current by limiting absorption, but the overall cell performance improves because of an increase in the open-circuit voltage. Fig. 4 shows...
Fig. 3. Highly reflective PC is needed for significant improvement of the cell efficiency.

TABLE I

<table>
<thead>
<tr>
<th>E_g^C (eV)</th>
<th>R (%)</th>
<th>E_g^{PC} (OPTIMIZED)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>--</td>
<td>--</td>
<td>22.3</td>
</tr>
<tr>
<td>0.67</td>
<td>100</td>
<td>1.37</td>
<td>33.6</td>
</tr>
<tr>
<td>0.67</td>
<td>99</td>
<td>0.79</td>
<td>25.1</td>
</tr>
<tr>
<td>0.67</td>
<td>90</td>
<td>0.73</td>
<td>23.8</td>
</tr>
<tr>
<td>0.67</td>
<td>80</td>
<td>0.72</td>
<td>23.4</td>
</tr>
<tr>
<td>0.67</td>
<td>40</td>
<td>0.71</td>
<td>22.7</td>
</tr>
</tbody>
</table>

Effect of nonideal PCs. The photonic bandgap energy necessary for highest photovoltaic efficiency depends on the reflectivity of the PC; $R = 100\%$ corresponds to an ideal PC that reflects all incident light that exits within the photonic bandgap. The top row corresponds to the reference cell with no PC.

Fig. 4. Current–voltage characteristic of a $E_g^C = 0.67$ eV solar cell with (solid line) and without (dotted line) a PC. The addition of a PC increases the open-circuit voltage but decreases the short-circuit current density.

this effect for a solar cell made from a material with a bandgap energy of 0.67 eV (e.g., Ge) and $\eta_{int} = 0.1\%$. The addition of an ideal PC with energy bandgap from 0.67 to 0.74 eV results in a 2.9% absolute efficiency gain. Even with realistic material parameters, efficiency gains of several percent are possible. As an example, a solar cell’s efficiency improves by 2.0% absolute for a PC with $R = 90\%$ compared with no PC. Table II shows the relevant cell parameters.

TABLE II

<table>
<thead>
<tr>
<th>Device Parameters for a $E_g^C = 0.67$ eV Solar Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (%)</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Reference</td>
</tr>
<tr>
<td>Ideal PC</td>
</tr>
<tr>
<td>PC</td>
</tr>
</tbody>
</table>

The photonic crystal reduces the short-circuit current, increase the open circuit voltage, and increases the energy conversion efficiency.

IV. EMISSION ANGLE RESTRICTION WITH OPTICAL LOSSES

It is well known that the emission solid angle plays an important role in determining the cell’s V_{oc} [2], [11], [17]–[21]. In fact, the improvement in the V_{oc} due to restricting the emission angle is comparable with the improvement in the V_{oc} due to light concentration. In both cases, the voltage improvement is caused by an increase of the carrier densities. When the emission half angle θ_e is limited to that of the sun’s half-angle $\theta_s = 0.267^\circ$, the efficiency reaches that of 46 000 suns concentration.

The main limitation on emission angle restriction is generally thought to be due to NR recombination [2]. However, high-quality GaAs is thought to have an internal fluorescence yield of 99.7% [12], making it an excellent material choice. A GaAs solar cell that has a fully restricted emission angle may be able to achieve efficiencies $>40\%$ under 1 sun illumination if a photonic structure can be designed that is capable of fully restricting the emission of all photons. It is also known that PC structures can be used to modify the outcoupling of light in LEDs through a modification of the spontaneous emission radiation pattern [13], which could be useful for experimental realization.

Two important parameters that must be considered for emission angle restriction using realistic photonic structures are the bandwidth of the photonic structure Δ_{PC} and the photonic efficiency, η_{ph}, i.e., the fraction of photons that are restricted in their emission angle compared with the total number of photons that are emitted. If angle restriction is only possible over a range of wavelengths or $\eta_{ph} \neq 100\%$, then the overall cell efficiency enhancement will be decreased (see Fig. 5).

Only a relatively small bandwidth is needed for significant efficiency improvement. A photonic structure with a bandwidth of only $\Delta_{PC} = 170$ meV yields a $\approx 3\%$ absolute efficiency improvement for $\eta_{ph} = 100\%$, and a structure with $\Delta_{PC} = 570$ meV yields an efficiency $>40\%$. However, when $\eta_{ph} \neq 100\%$, the maximum achievable efficiency is significantly lower. While a perfect photonic structure could allow for a solar conversion efficiency of near 42%, a photonic structure with $\eta_{ph} = 99\%$ results in a solar conversion efficiency below 37%. Thus, the development of extremely high-quality photonic structures is necessary.

Finally, we note the importance of high internal fluorescence yield. Fig. 6 shows the current–voltage characteristic for a semiconductor with $E_g^C = 1.43$ eV and $\eta_{int} = 99.7\%$ (e.g., high-quality GaAs) that is fully angle restricted ($\theta_e = \theta_s$ and $\eta_{ph} = 100\%$). For this case, an absolute efficiency enhancement of 1.7% is found.
Large efficiency enhancements are achieved for relative small band-width ΔE_C photonic structures. However, these structures need a high photonic efficiency. Inset: A photonic structure is used to reduce the emission half-angle from the cell, which is typically 90°, to that of the sun, $\theta_s = 0.267^\circ$.

Current–voltage characteristic of a solar cell with $E_g^{\text{SC}} = 1.43$ eV and $\eta_{\text{int}} = 99.7\%$. The addition of a photonic structure to reduce the emission angle has no effect on the short-circuit current but improves the open-circuit voltage.

V. CONCLUSION

We have shown a degree of freedom in a solar cell design by incorporating photonic structures that are constructed to restrict photon absorption and emission. Nonideal reflectivity and NR recombination are considered and found to play an important role in determining the maximum achievable efficiency. Such structures are capable of improving efficiencies by several percent when realistic material parameters are used. In addition to high-quality photovoltaic materials, the quality of the photonic structures is equally important. This leads us to emphasize the importance of developing new photonic structures for photovoltaics.

REFERENCES

Yuulu Xu received the Bachelor of Engineering degree in optoelectronic information engineering from Huazhong University of Science and Technology, Wuhan, China, in 2011. He is currently working toward the Ph.D. degree in electrical and computer engineering with the University of Maryland, College Park, MD, USA.

He is currently working with the Laboratory for Solar and Quantum Technology, University of Maryland. His research interests include technologies for solar energy conversion using photonic structures.

Jeremy N. Munday (M’06) received B.S. degree in physics from Middle Tennessee State University, Murfreesboro, TN, USA, in 2003 and the M.A. and Ph.D. degrees in physics from Harvard University, Cambridge, MA, USA, in 2005 and 2008, respectively.

He is currently an Assistant Professor with the Department of Electrical and Computer Engineering and the Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA. Prior to this, he was a Postdoctoral Research Scholar with the California Institute of Technology, Pasadena, CA, USA. His research interests include next-generation photovoltaics, alternative energy, engineering acoustic and electromagnetic materials, plasmonics, and quantum electrodynamic phenomena, such as the Casimir effect. His research has been published in a variety of international journals, and he has contributed chapters to three books.

Dr. Munday is a Member of the American Physical Society, Sigma Pi Sigma, the Materials Research Society, and the International Society for Optics and Photonics. He received the NASA Early Career Faculty Space Technology Research Award and a National Science Foundation fellowship.